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J. Phys. A: Math. Gen. 15 (1982) L93-L96. Printed in Great Britain 

LElTER TO THE EDITOR 

On the inverse problem of the calculus of variations 

Marc Henneauxt 
Center for Theoretical Physics and Center for Studies in Statistical Mechanics, The 
University of Texas at Austin, Austin, Texas 78712, USA 

Received 25 November 1981 

Abstract. A method for handling the inverse problem of the calculus of variations is 
proposed. 

In this letter we propose a method to solve the following questions: given a set of 
second-order differential equations 

4 = f i ( 4 , 4 ,  t )  i=l,. . . , n (1) 

( a )  do there exist Lagrangians L(4,4, t) which yield Euler-Lagrange equations 
equivalent to (l)? (b) if yes, how can one find all these Lagrangians? On account of 
the important role played by variational principles in both classical and quantum 
physics, this problem, known as the inverse problem of the calculus of variations, has 
recently received much attention (see for instance Dodonov et a1 (1981) for a recent 
review). 

It is well known that when a Lagrangian L exists, the Lagrange parentheses 
ffA,[L] = (z,, z,) of the coordinates and the velocities with each other are related to 
L by the equations 

Here, the Greek indices run from 1 to 2n, a, stands for a/&, and the variable z ,  is 
equal to the coordinate 4"' or the velocity 4" according to whether p lies between 
1 and n or n + 1 and 2n. We recall that (z,, z,)[z,, z,] = SA,,, where [ , ] are the usual 
Poisson brackets. 

The relations (2)-(3) imply that: 
(i) the 2-form u is closed, i.e. it obeys a,u,, +a,u,, + a g A ,  = 0, or, in modern 

d u  = 0; (9 
notations 

(ii) it is non degenerate, i.e. 

de tuZO (ii) 

(the matrix a*L/a$aq' is non-singular by hypothesis); 
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(iii) it annihilates the bivectors a/aq' A a/aq' 

(iii) 

(this is equivalent to the fact that the Poisson brackets [q ' ,q ' ]  all vanish, and is a 
consequence of the antisymmetry of uA,, in the one-dimensional case); and 

(iv) it obeys the equations 

2 , ~  + a,a = o ( iv)  

which reflect that the motion is canonical (2, is here the Lie derivative operator along 
the vector field f tangent to the motion; in component notations, this equation reads 
f"aflA, +aAf"up, +dLIf"uAp  + auA,/at = 0, where f" is equal to q" when 1 G p s n, and 
f" when n < p  ~ 2 n ) .  

Now, it is a key fact that the converse of (i)-(iv) also holds, at least if the 
configuration space is R "  (for simplicity, we shall not consider other topologies). 
Indeed, if a 2-form a possesses the properties (i)-(iv), with f"  given by ( I ) ,  then 
there exists a function L(q, 4, t)  from which it derives: the equations 

d L = x f a + a p  (4) 

with 
da  = U  a (a/aq') = 0 

regarded as equations for the function L and the potential vector a, are integrable 
and yield functions L such that U = a[L]. Besides, it follows from (4) and (ii) that 
the variational equations implied by L are equivalent to the dynamical equations (1). 
Furthermore, there is a bijective correspondence between equivalence classes of 
Lagrangians for (1) and equivalence classes of solutions to the differential system 
(i)-(iv) (L and L' are called equivalent iff L' = a L  + dg/dt, CY E R # 0; U and U' are 
called equivalent iff a' = aa, a E R # 0). This reduces the study of the inverse problem 
to the study of the differential system (i)-(iv) for the 2-form cr, which is easy to handle 
as we shall now discuss. 

Taken separately, each equation (i)-(iv) possesses an infinity of solutions (the 
necessary regularity conditions on f and U are assumed to be satisfied). However, in 
more than one dimension, the differential equation (iv) is, in general, incompatible 
with the algebraic conditions (ii)-(iii), and there is no Lagrangian for (1) (the one- 
dimensional case has been treated by Darboux (1894) and will not interest us here). 
This is because (iii) and (iv) imply the algebraic equations 

which one easily obtains by acting with the operator (a, +3',)" on (iii) and making use 
of (iv). Equations (6) constitute a system of linear, homogeneous equations for the 
n(2n - 1) components uAp, the rank of which depends on the forces through the Lie 
derivatives LZf. In general, i.e. for sufficiently arbitrary forces, this rank is equal to 
n(2n - 1). Consequently, the only solution to (6) is U = 0, which violates (ii). There 
is thus in general no Lagrangian for (1). 

Suppose now that a Lagrangian exists. Then, the forces are not arbitrary, in the 
sense that they obey all the equations which express that the algebraic system (6) has 
a rank smaller than n(2n -1)--so that a non-zero solution for U indeed exists. 
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Consider the equations obtained by demanding that this rank also be smaller than 
n (2n - 1) - 1. As one easily checks, these equations are not’ identities, and are thus 
in general not satisfied by the forces at hand. In other words, the rank of the algebraic 
system (6) is as a rule precisely equal to n(2n - 1) - 1, which means that its general 
solution is A&, where A is an arbitrary function of 4, 4 and t, and where & is a 
particular solution. Since a Lagrangian exists, one can assume without loss of generality 
that d& = 0, 8 6  +9,6 = 0 and det & # 0. If one now requires that the 2-form A& also 
obeys the equations (i) and (iv), one gets partial differential equations for A whose 
only solution is A = constant (except in the one-dimensional case for which d(A6) is 
an identity). The general solution to the system (i)-(iv) is accordingly determined up 
to an arbitrary multiplicative non-vanishing constant (when n > 1). This shows that 
when a Lagrangian yields Euler-Lagrange equations equivalent to (l), it is usually 
unique, up to the equivalence relation mentioned above. The well known examples 
with many inequivalent Lagrangians L(q,4, t) (e.g. L=q1q2 for the two- 
dimensional free particle. , .) are thus exceptional, contrary to a belief sometimes 
expressed in the literature. This result is important for quantum mechanics since 
inequivalent Lagrangians lead to inequivalent quantisations. 

Now, let us assume quite generally that the rank of the algebraic system (6) 
is equal to n(2n - 1) - k. Then, its solution depends on k functions h ~ ( q ,  4, t) 
( A  = 1 , .  . . , k). These functions must be taken in such a way that the equations (i) 
and (iv) are satisfied. Since the operators d and 8, +Sf commute, one can first consider 
the equations dcr = 0 at some arbitrarily chosen initial time fo and then propagate 
their solutions in time by the ‘evolution equations’ (iv). The equations dcr = 0 turn 
out to be linear partial differential equations of the first order for the functions 
A A ( ~ ,  4, t = to). There exist methods to solve such systems. But these methods are 
usually not needed here since, as we argued above, the number of unknown functions 
AA involved is generally low and the equations at hand are accordingly simple (the 
rank of the system (6) is equal or close to n(2n.- 1)). This is one of the main reasons 
why it is advantageous to study the algebraic system (6) first, at least when the forces 
are non-trivial. The inequality (ii) must also be taken into account and imposed on 
the functions AA. 

Once the general 2-form oA,(q, 4, t )  that solves the system (i)-(iv) is determined, 
one can get the Lagrangians by integrations along curves in the (q ,4 )  space, according 
to formulae (4) and ( 5 ) .  Of course, these integrations may not be elementary. But 
they are in principle feasible. Thus the analysis above provides a solution to the 
inverse problem of the calculus of variations-although there remain many obvious 
important questions to answer such as: can one by-pass some of the integrations 
mentioned above even when the rank of (6) is small? Or is it possible to characterise 
more precisely the types of forces that admit one and only one equivalence class of 
Lagrangians? 

That the inverse problem of the calculus of variations can be treated by means of 
the equations (i)-(iv) for the Lagrange parentheses (zA, z.), with the key role played 
by the algebraic system (6), is the main result reported in this letter. In order to give 
it more impact, we add the following remarks. 

(i) The algebraic conditions (6) with m = 1 simply state that the Lagrange paren- 
theses (si, 4j )  are symmetric ((qi, d j )  = (qi, di)), whereas the ones with m = 2 can be 
used to eliminate the parentheses (qi,qi) in terms of ( 4 j 9 4 j ) .  All the subsequent 
equations can thus be completely expressed in terms of the n(n + 1)/2 Lagrange 
parentheses (qi, dj ) .  
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(ii) When applied to the Kepler problem, the above method sbows that there is 
one and only one Lagrangian in two dimensions (up to the pnviausly mentioned 
equivalence relation), which is the standard 'kinetic energy K "s potential energy 
V', whereas there are as many Lagrangians as arbitrary funaioas of two variables in 
three dimensions. For instance, L = K - V + J / r 2 ,  where J is the h g t h  of the angular 
momentum and r is the radial distance from the origin, is another acceptable 
Lagrangian. It does not differ from the standard one by a total time derivative. and, 
to our knowledge, its existence was apparently not suspected in the past. 

(iii) This letter also answers the question: do the equations of motion determine 
the commutation relations? (Wigner 1950, Okubo 1980). In al, they do, at least 
up to factor ordering problems. Indeed, the Lagrange p a r e n t i "  have been shown 
to be generally unique, up to a multiplicative constant (when a L a g ~ ~ g i ~  exists). 

(iv) The degeneracy in the number of inequivalent Lagrmghs, characteristic of 
systems governed by excessively modelised forces, can be eliminated by first establish- 
ing perturbations that remove the degeneracy and then taking the limit of none. For 
spherically symmetric potentials, such a procedure selects the standard Lagrangian 
U (K - V) (+total derivative) as being the only one capable of incorporating anisotropic 
perturbations. 

(v) The equations (i)-(iv) for the 2-form U can also be deduced from the so-called 
'first-order formalism', by using results due to Havas (1973) and by writing the 
conditions that must be satisfied in order that the transition back to the 'second-order 
formalis" be possible (these conditions are nothing else but the equations (iii)). 

(vi) Let u1 and u2 be two solutions to (i)-(iv). Then, the trace of the matrix 
[(ul)-'u2]" is a constant of the motion, for every integer m (the determinant of this 
matrix is thus also conserved, for every m ) .  This interesting result has been proved 
by Hojman and Harleston (1981) (see also Currie and Saletan 1966, Henneaux 
1981b). It should be pointed out, however, that since u2 is in general just proportional 
to ul, this theorem only yields usually trivial constants of integration. 

We shall discuss in detail the method and results of this letter and their proofs as 
well as some of their implications elsewhere (Henneaux 1981a. Henneaux and Shepley 
1981). 

It is a pleasure to thank Professors I Prigogine, C Teitelboim, L C Shepley and J A 
Wheeler for much encouragement, useful discussions and kind hospitality. 
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